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Abstract. We. study the correlations between two equilibrium sIates of SK spin glasses at 
different temperatures or magnetic fields. The question, previously investigated by Kondor 
and Kondor and Wgso, is approached here by consrraining two copies of the same system 
at different external parameters to have a hwed overlap. We find that imposing an overlap 
different from the minimal one implies an extensive cost in free energy. This confirms by a 
different method Kondor's finding that equilibrium states corresponding b different values of 
the external parameten are completely uncorrelated. We also consider the generalized random 
energy model of Derrida as an enample of a system with strong correlations W e e n  states at 
different temperawes. 

1. Iotmducfion 

The structure of the equilibrium states of mean-field spin glasses has been widely discussed 
in the literature [I]. At low temperature ergodicity is broken, and the contribution to the 
Boltzmann average comes from 'valleys' separated by infinite barriers. The statistics of the 
correlations between the different valleys for equal values of the external parameters is one 
of the most remarkable outcomes of the replica method. In the context of the Parisi ansatz, 
it is found that the function q ( x )  is directly related to the statistics of couples of valleys, 
while the whole set of states is organized as an ultrametric tree. Much less information 
is available about the relations between the equilibrium states for different values of the 
external parameters. The object of this paper is an investigation of this relation. 

The states of mean-field spin glasses can be thought as a low-freeenergy solution of 
the TAP equations. Changes in the external parameters can cause the appearance or the 
disappearance of solutions and modify the relative order of the free-energy levels. There 
are models, for example the p-spin spherical spin glass, where the order of the levels is not 
affected by changes in temperature [2]. In this case the states at different temperatures are 
correlated. 

In a model where a change in an external parameter implies a reshuffling of the states 
by an extensive amount, one can expect that the low-lying states at a given value of the 
parameter will become highly excited states as the parameter is changed. For entropic 
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reasons one would then find zero correlations between the new and the old equilibrium 
states. 

The first suggestions that states in the SK model corresponding to different external 
parameters could be uncorrelated date back to Parisi in the case of magnetic field [3] and to 
Sompolinsky [4] in the case of temperature. The problem has been addressed analytically 
by Kondor [5] and Kondor and Vkgso 161. Withiin the frame of the replica method they 
considered the partition function of two realizations of the same system for different external 
parameters. In these papers constant correlations were assumed; this constant was found to 
be zero in mean field and the Gaussian corrections to this situation were computed. 

Here we reexamine the question without using this assumption. Instead we follow a 
method introduced in [7], and we take into account in the partition function (2) of the two 
systems only these couples of configurations having overlap equal to a fixed value p d .  It 
was shown in [7], in the case of two systems at equal external parameters, that if p d  is 
in the support of the probability function P ( q ) ,  the logarithm of the constrained partition 
function is extensively equal to that of an unconstrained system. This result tells us simply 
that the partition function is dominated by these couples of equilibrium states which satisfy 
the constraint. Conversely, if pd is out of the support of the P(q)  the system is forced out 
of equilibrium and this implies an extensive increase of the free energy F = - log Z. 

In the present case, an extensive increase in F implies a reshuffling of the free-energy 
level of an extensive amount, and zero correlation between states for different external 
parameters. The method, relying on the saddle-point approximation, is limited to the 
computation of the extensive part of the free energy. So, a x r o  cost in free-energy density 
would not strictly imply no reshuffling, but just that the reshuftling is not extensive. With 
reference to the theory of dynamical systems, the situations in which small control parameter 
changes imply uncorrelated equilibrium states has been often referred to as ‘chaotic’. We 
will use this term in a more restrictive way to denote a situation where the freeenergy 
increase resulting from the imposition of a fixed overlap .m # 0 is extensive. 

The paper is organized as follows. In section 2 we state the basic definitions and our 
method. In section 3 we discuss the problem in the simple case of the Derrida generalized 
random energy model (GREM), where handwaving arguments show that there is no chaos with 
temperature in absence of a magnetic field, and along the lines of constant magnetization. 
We show how some modifications in those models produce chaos with temperature. In 
section 4 we study the SK model near the glassy transition. We show that no ultramettic 
solution exists for the problems with different magnetic fields or temperatures. We argue 
that this is the sign that chaos is present in both cases and give estimation for the free-energy 
increase. Finally we draw our conclusions in section 5. 

S Franz and M Ney-NiJle 

2. The model 

Let us consider a system composed of two copies of a Sherrington Kirkpatrick (SK) model, 
having different temperatures and magnetic fields (TI, h,) and (T2. hz), respectively. The 
partition function of such a system is 

where the couplings .Ii, (i, j = 1, . . . , N) are Gaussian independent variables of zero mean 
and variance 1 / N ,  and the spins S; are Ising variables. In what follows we will improperly 
call free energy the quantity F = -1ogZ. To address the question of the correlations 
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between the states dominating ZI and Zz, respectively, let us consider Z(pd) the sum (1) 
restricted to those configurations which satisfy 

It is clear from the definition that Z(Pd) < Z. It is shown in 171 in the case T, = TZ and 
hl = hz that, in the low-temperature phase, one has (1/N)logZ = (l/N)logZ(pd) as 
soon as pd is in the support of the function P(q) of the free system. This is a consequence 
of the fact that the number of valleys dominating the partition function grows less then 
exponentially with N, as can easily be understood noting that z = JdpdZ(pd). An 
increase in free energy at an extensive level implies the absence of low-lying states having 
overlap pd. 

In [7] it was shown how to deal with a problem of two coupled copies with the replica 
method. We shall not repeat the derivation of formulae that are completely analogous to 
those in [7] here, but we shall just sketch the results. Instead of the usual order parameter 
matrix Q.6 of the replica method, there are three matrices Q::, ~2 and P.6 representing 
respectively 

where a, b = 1,. . . , n and n is 'the number of replicas', which as usual has to be sent to 
zero. The constraint in the partition function implies that the elements Pa, have to be set 
equal to pd. Combining Q'", Q(", P and its transpose PT into the matrix 

and denoting its elements by Q,,, a = (r, a). B = (s, b), it is possible to see, for both T, 
and TZ near the critical temperature T, = 1 and h ,  and hz small, that Q,p - 1 - TI and the 
free energy admits the expansion up to fourth order in T, - Tc (s = 1,2): 

1 
F(pd) = - dFm ; 1% z(Pd) 

where 

r, = (1 - ~ 3 / 2  s = 1,2  rlz = (1 - T ~ T z ) / ~ .  (5) 
For the 'complete' SK model y = U = U = w = ~1. It is customary in the study of the glassy 
transition to consider a 'truncated' (or 'reduced') model in which it is artificially posed that 
y = U = 0, and in which only the term Cap Q$ is retained from among all the quartic 
terms. Kondor and V6gso have shown recently that this can give rise to instabilities in 
considering couples of system with different temperatures when the magnetic field is zero. 
We anticipate that the arguments showing the presence of chaos do not depend critically on 
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which of the two models is used. So, we will use the complete model to prove the presence 
of chaos and we will estimate the free-energy increase within the truncated one. In any 
case, equation (4) has to be maximized with respect to the values of the elements of the 
replica matrices. 

S F r w  and M Ney-Nipe 

The basic object of our investigation will be the free-energy difference 

A F  F@d)  - F (6) 
where F is the logarithm of the partition function of the two systems (at two different 
external parameters) without constraint, and is equal to the sum of the free energies of the 
two systems. In what follows we will refer to A F  as ‘free-energy excess’, and to ‘chaos’ 
whenever this quantity is non-zero. 

Following [7] we will consider here an analytic continuation to n -+ 0 for F(pd)  in 
which each of the matrices and P are parametrized according to the Parisi scheme, 
that is, specifying the value of the diagonal elements as a function of the interval [OJ] 
according to 

e(‘’ -+ (0, 4 r ( x ) )  p -+ (Pd, Ph)) 0 < X < 1. (7) 
The usual restriction of the choice of the Parisi function to the space of non-decreasing 
function is substituted here by the requirement of semi-positive definiteness of the matrices 

for any x ,  where the primes denote differentiation with respect to x 181. In particular, this 
implies that the functions ql(x) are both positive. 

The saddle-point equations for the maximization of Fz(pd) of the truncated model are 
written in terms of the q d x )  and p ( x )  as 

- ix dy [ql(X) - ql(y) + &) - qzlV)l[~(x) - P(Y)I 

+$p3(x)  + h1hz = 0. (10) 

We also write for future reference the expression for the derivative of F with respect to pd:  

Our variational equations differ from the one considered in [5,6] in the fact that there pd 
was taken as a variational parameter and the function p f x )  was constrained to a constant. 
We will see in the next section that models without chaos require non-constant p(x) .  

Before starting to discuss the maximization of (4) and the solutions of (9),(10), we 
discuss the correlations between states at different temperature and magnetic field in the 
G E M .  
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3. The GFSM a model without chaos 

Let us briefly~ review Derrida's construction of the generalized random energy model. 
Without any pretension of being exhaustive on this point, we refer the reader to the.origina1 
papers on the model [9-111. 

In the GREM one considers zN configurations, associated with the 'leaves' of an 
ultrametric tree. The tree is composed of L levels of branching. At a level a, each branch 
generates N, = exp(NS,) new branches, in such a way that 2N = A random 
energy is associated with each branch at a level a, so that the total energy of a configuration 
is given by E = E, E,. The ce are taken as independent Gaussian variables of zero mean 
and variance €2 = N J 2 / 2 .  Two configurations are conventionally said to have an overlap 
q., with 0 < qu < 1, if they coincide at a level a, and consequently have the same cp for 
j3 < a. It can eventually be considered as a 'continuum limit' of infinite number of levels 
( L  + CO) with infinitesimal spacings, where J, 4 J(q)dq, S, + S(q)dq . This exhausts 
the construction in the absence of a magnetic field. In the presence of a magnetic field 
h one has to associate magnetization one with an arbitrarily selected state, in such a way 
that the configurations of magnetization m are those having an overlap equal to m with this 
state. For these states the energy gets an extra contribution equal to -Nhm, where h is the 
magnetic field. 

In what follows we will limit our discussion to the case where J ( q )  and S(q) increase 
with q,  where the levels associated with small q freeze at a higher temperature than the 
levels of high q. 

The absence of chaos with varying temperature in zero magnetic field is almost obvious; 
by definition of the model, a change in temperature does not affect the order of the energy 
levels. So, two equilibrium states at different temperatures T and T' can be strongly 
correlated. In the same way it is easy to realize that there is chaos with the magnetic field. 
Two different magnetic fields, say hl and hz, impose respective magnetizations ml and m2 

on the system with ml # m2. By construction the overlap between two states with such 
different magnetizations is equal to 412 = min{ml, mz}. Imposing a different overlap would 
bring the magnetizations out of their equilibrium values, implying an extensive cost in terms 
of free energy. Furthermore, in the presence of a magnetic field, a change in temperature 
implies a change in the magnetization, and again we find chaos. Thus chaos is  clearly 
absent along the lines ( T ,  h) of constant magnetizationt. 

Let us now show with the aid of the replica method that, for two different temperatures 
in zero magnetic field, there is no freeenergy cost in imposing an overlap p,j in the suppoxt 
of the function P(q).  Note that the same results could easily be obtained with the Derrida 
probabilistic technique. The replicated partition function of the OREM in zero field, in the 
discrete formalism, is 

- 

where the level a0 corresponds to the overlap p d ,  OL = 1,. . . , L, s = 1,2 and a = 1,. . . , n 
is the replica index. On performing the average over the values of the energy levels one 
gets 

t We thank J Kurchan for this observation 



2504 

To evaluate the partition function we make the following ansatz on the arrangement of the 
replicas. We suppose that for the levels CY Q cio, where j:, = j& the replicas are divided 
into nix. groups of x, coinciding states (i.e. j& = j& for any r, s if a and b are in the 
same group). For the levels a! 2 cio, one has j,,, # j&, and one can divide, accordingly to 
the same scheme the replicas with s = 1 and s = 2 into n/xA and n/x," groups, respectively. 
It is easy to see that the free energy is given by the expression 

S Franz and M Ney-Ni$e 

(14) 

taken at the saddle point over the various x .  Assuming that the level CUO is frozen at the 
temperatures TI and Tz, one finds, on differentiating with respect to xu,.: and x,", that 

ci > a0 and S,/(J:p:) z 1. 

Substituting these in (14) one sees easily that ( l / N ) l o g F  = ( l / N ) [ l o g ~ + l o g ~ ] ] ,  that 
is, we find no chaos with temperature. 

It is interesting to note that, in the continuum limit, inverting the functions x ( q )  and 
x,(q), the functions qs(x) and p ( x )  take the form: 

where q.(px) is the inverse function of Px(q) = S(q)/J2(q),  and the points xo and x, are 
defined by the relations 

(18) 

The only solution with a constant p ( x )  is the one with pd = p(x )  = 0. 
So we have shown, in a situation where the order of the levels does not depend on the 

temperature, that imposing an overlap p d  in a suitable interval does not imply an extensive 
free-energy cost, i.e. chaos with does~not occur with temperature. The situation is different 
if the ordering of the state depends on the temperature. In the context of the GEM, such a 
dependence can be introduced upon considering one or two of the following modifications: 

choosing temperature dependent S, or J,; 
not imposing the identity of the levels for different temperatures. 

This can be done without dramatically changing the organization of the states at fixed 
temperature and the temperature dependence of the free energy. Here we choose to discuss 
the simplest case, namely the second possible modification. We take a REM (i.e. a GREM 

qu((@l + &bo) = 4u(f%s) = P d .  
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with only one level, L = I), where the Gaussian energies depend on T, and the correlations 
are specified by 

where C(T1, Tz) < 5' = C(T, T). The model can easily be analysed with the probabilistic 
method used by Derrida to solve the REM. For the sake of brevity, we give our results in the 
frame of the replica method. Let us compute the free energy of two replicas, at temperatures 
TI and TZ below the freezing transition, constrained to be in the same state 

Proceeding as above for the GRKM (dividing the replicas into p u p s ) ,  one finds that 

1 -  1 1 
-1Og.z" = J I ~ ~ ~ ( ( B : + B : ) J ~ + ~ B ~ & C ( G ,  rzj) < - i o g q +  - 1 0 g q .  nN (21) nN nN 

The equality is recovered for C(G, Tz) = J2 which corresponds to identical levels at the 
two temperatures. It would be interesting to understand if this mechanism which produce 
chaos with temperature is of any relevance in microscopic models. 

4. Chaos in the SK model 

Let us now turn to the study of the SK model and investigate the possibility of an absence 
of chaos. A possible scenario implying the absence of chaos has been proposed in [12]. 
The states at different temperatures are strongly correlated. On lowering the temperature 
the ultrametric tree of states undergoes multifuractions in such a way that the states at the 
new temperature are the descendents in the tree of the ones at the old temperature. This 
is what happens in the GREM, and it seems reasonable that whenever chaos is absent this 
must be the correct picture: the states at different temperatures must be part of the same 
ultrametric tree. In this case the total matrix C&p should be ultrametric: for any given three 
distinct replicas a, p, y one should find Q,, > min{Q,,,, Cl),,}. Specializing the relation to 
a = (1, a) ,  B = (2, a) ,  y = (1, c), that is, Ql..% = Pa, = p d ,  it is easily found that 

If we suppose that, as in the case of coinciding external parameters, the functions q,(x) 
and p ( x )  are continuous [7], we find that condition (22) reflects on the functions q,(x) and 
p ( x )  in the following way: @ ( x )  and q2(x)  must be non-decreasing in the whole interval 
[O, I], and a point T in [OJ] must exist such that 

By continuity one has qCO = P d .  
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The solution (16), (17) for the GREM is obviously of the form proposed here. A solution 
of this form was found in [7] in the case where T, = TZ = T and hl = hz = h.  It reads 

q l w  = q d x )  = 

where the function qF(x) is the 'free' Parisi function 

in which xo is the point defined by q F ( X 0 )  = p d ,  and xmin and x,, are given by continuity. 
The interval of p d  for which this solution is well defined, and that will be considered in what 
follows, is qmin < p d  < q-. The form (24), (75) is not limited to this problem; simply as a 
consequence of ultrametricity any model with repka  symmetry breaking admits (24). (25) as 
solution of the hwreplica problem if the function qF(x) solves the singlereplica one [13]. 

The main result of this paper is that, as long as Tl # G or hr # hZ, an ultramehic 
solution of the kind (23) does not exist for either the truncated or complete models of 
section 2 .  A proof of this fact can be given assuming a form of the kind (23) and showing 
that it does not satisfy the saddle-point equations. We postpone this proof to the appendix; 
despite its conceptual simplicity the proof, already rather technical for the reduced model, 
is complicated by the necessity of using the complete model if we want full control over 
all the terms of order r: in the free energy. 

We conclude that chaos must be present both in temperature and magnetic field. 
We shall now give some estimate for the free-energy excess when the constraint (2) 

is imposed in various situations.  the solution of equations @),(lo) for generic values of 
temperature, magnetic field and p d  is very difficult to find. We have seen that the situation 
simplifies for hl = h2 and TI = T2 where the solution for generic p d  is (24)-(26). Other 
simple cases, to be presented below, are found for 4 # Tz and hl # hz for special values 
of pd pz  which permit functions p ( x )  that are constant with x .  It is easy to find that 
in this last case the system verifies aF/apd = 0, that is, the free energy is an extremum 
with respect to p d .  The Only stable solution is the one which is a minimum with respect 
to p d - [ 5 ] ,  and has a free-energy excess equal to zero?. It is easy to find that this solution 
must satisfy 

Ps(x) = q f ( X )  and P ( x )  = P d .  (27) 

ZlZPd - (41 f 4 d P d  -t YPz + hlh2 

The values of p d  for which this solution exists satisfy 

0 (28) 

t The reader should not be confused at this point: we are by no means exwemizing F with respect to p d ,  but we 
are claiming that a special value p! exists, for which the free energy has a stable saddle point with p ( x )  = constant. 
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which coincides with aF/apd = 0 (see equation (11)). This solution was fist found by 
Kondor in [5] .  It is the only solution we found which has zero freeenergy excess and it 
implies minimal correlations between states corresponding to different parameters. 

We shall use both the solutions (24), (25) and (27), (28) as starting points to compute 
the freeenergy excess perturbatively in some small parameter. We shall consider the three 
following limiting situations: 

CaSe 1. TI = T2, hi f: hz, pd = p: + 8pd and we perturb for small 8pd around the 
solution of (10) with p ( x )  = p i .  
Case 2. TI = E ,  hz = hl +6h hed pd and we perturb for small 6h around the solution 
(24h (W. 
Case 3. 5 # TI, hl = hz. pd = p j  + 8pd and we solve perturbatively in 6pd. 

In all cases, instead of solving equations (9), (10) even in an approximated form, we will 
suitably parametrize the functions q,(x) and p(n), and maximize the free-energy functional 
with respect to these parameters. This variational procedure will enable us to obtain lower 
bounds for the free-energy excess in the various situations. We expect, however, to obtain 
the correct order of magnitude for A F as a function of the various extemal parameters. 
The whole program is analogous to the one pursued in [7] for computing the free-energy 
excess to have pd out of the support of the P(q)  for identical parameters, or in [8] for 
studying violations of ultrametricity. We refer the interested reader to these papers for a 
more detailed presentation. 

Let us illustrate case 1 as an example. For pd = p j  + 8pd (spd << p i )  we look for 
functions q&) and p ( x )  equal to (27) plus some small variatious. These variations, that we 
call Sq8(x) and Sp(x), have to be of order of 6&$j in the saddlepoint solution. We choose 
to parametrize them as follows: 

x < x ,  12 

8ql ( x )  = I d q ,  "i xm/2 < x c XI + 8x1 

x 5 x, +6X' 

x c x , j 2  

n, 12 < x < x2 + 6x2 Sq2W = sq; 1: X>X2+8X2 
6p' x < X m / 2  [ sp2 x > X m / 2  

= 

where xm/2 is arbitrarily chosen as the middle of the first plateau in qF, i.e. xm = min[xl, X Z ]  
with x, = 2q& and q h n  = (3hf/4)1/3, (s = 1,2). The various parameters appearing above 
are determined by maximization of the frmenergy functional supposing self-consistently 
that they are of order Spd. It turns out that to lowest order the freeenergy excess is of order 
8pj .  As we are only interested in lowest-order terms, we can minimize the polynomial of 
order two thus obtained by expanding up to second order the free-energy functional in all 
the parameter of order Sp?. The resulting saddle-point equations are linear equations in the 
(10) variational parameters, that we solved numerically for given values of r, hl and hZ. 
In figure 1 wa present the result for the &-energy excess at some values of the extemal 
parameters. We also solved analytically the equations in the two limit cases: (i) hZ = 0 and 
(ii) hz = h i  -t 6h with 6h < hI. In this last case we just computed A F  to the first order 
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Figure 1. The &.energy excess AF/Sp; as a function of qih  = (Eh:)" in two eases. Upper 
c w e :  qAin = 0.027, hl = 0.0038, A F  = 0 for qiin = 0.027. Lower c w e :  qAin = hl = 0 
A F  = 0 for qiin = 0. The symmeuy'of A F  as a function of 41 and q2 implies that two c w e s  
am equal in the opposite extremes. 

in 6h. The results for these two cases are: 

In all cases the variational parameters turned out to be consistent with the hypothesis 
of being of order 6Pd and with the positivity condition (8), e.g. in the case h2 = 0, hl # 0, 
x i  = 0, we found 6qf = -6pdqfi./(4q,, - 3qd,)  and 6p' = Sp2 = 6pd, the other 
variables being zero. 

The computation of case 2 for small field difference 6h = h2-hl follows a very similar 
scheme. In this case we perturb around the solution of the problem with 6h = 0 (?A), (25) 
with ¶min < pd 4 q-. Without entering in the details of the solution, which is similar to 
the one of the previous case, we give the result. Under the (self-consistent) hypothesis that 
all the variations are of order Sh one finds that the free-energy excess is of order ah2. We 
get 

Note that the freeenergy excess is zero for pd = ¶min, as it should be. 

we found for the free-energy excess: 
Very similar paths can be followed to study the case 3 of chaos with temperature. Here 

It is worth noting that equation (32) is derived from the truncated model in a magnetic 
field h,  = hz s h but does not depend on h. As was noted by Kondor and V6gso [6], 
the truncated model presents a spurious instability in the fluctuation matrix. The result (32) 
shows that our calculation is insensitive to this instability. 
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Equations (30)-(32) can be used to estimate the probability distribution for an overlap 
pd between states at different parameters in finite systems via the relation ?(pd) - 
exp(-N A F ) .  This relation allows for tests of (30x32) in numerical simulations. 

Finite dimensions 

Let us now briefly comment about the relevance of our results for finite-dimensional spin 
glasses. 

In addition to spin-spin correlations, an important quantity in finite dimensions is the 
correlation overlap function (S;Sj)l(SiSj)2 . In a chaotic situation this decays exponentially 
with a characteristic length El.2 for large li - j l .  This quantity was studied in [5,6], where 
it was found that for d t 8 

to,h - h-z'3 and t f i . ~ ~  IT1 - T21-I. (33) 
This behaviour was confirmed in numerical simulations by Ritort [14]. The sensitivity to 
small variations of an extemal parameter X is characterized by a 'chaos exponent' c, in 
t x , . ~ ,  - 1x1 - Xzl- ' /r ,  first considered in the framework of~the scaling theory of Bray and 
Moore [15] and the droplet theory of Fisher and Huse [16]. 

These results (33) may be compared with ours via the relation found in [14]: 

N[8P,ZI*" - 54  (34) 
where [. .I, denotes the average with respect to the distribution function of p d ,  P ( p d )  - 
exp(-N AF).  Upon substituting our results for thefree-energy excess AF one recovers 
the results (33) for the dimeusion-independent exponent C in the corresponding cases, in 
the case of two non-zero magnetic fields, for small Ihl - hzl = Sh our result is 

th,.h,ish - (hi Jh)-"4. f35) 
In lower dimensions it is possible to determine cq,fi 116-181 and AF [IS] within the 

scaling theories. ~ The differences compared with the mean-field case are that the relation 
between the two is different from (34), giving A F  - 6p;lTl - T2I4/', the exponent 
now depends on dimension and there are two regimes in temperature with two different 
behaviours of the two quantities mentioned I171 (one is the low-temperature phase, the 
other is the critical region). It could be interesting to see whether the latter happens in the 
mean-field case, too. 

5, Condusions 

In this paper we have studied the correlations between states at different magnetic fields 
and temperatures in some spin-glass models. In the REM and GREM chaos is absent with 
temperature, while there is chaos with magnetic field. This is understood in simple terms 
based on the ultrametric construction of temperature-independent trees. As soon as a 
temperature dependence is assumed, considering correlated but not identical energy levels 
for different temperatures, chaos is present. This could provide a possible mechanism for 
the occurrence of chaos in microscopic models. 

In the case of the SK model, we confirm the suggestions of Parisi [3] and Sompoliisky [4] 
that chaos is present both with respect to magnetic'field and temperature changes. The 
question was previously investigated analytically by Kondor 151 and Kondor and V6gso [6], 
who reached conclusions similar to ours. We stress, however, the importance of our further 
analysis: the results of these latter authors were based on an ansatz in which the matrix Pab 
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had all elements identical. Such a restriction would lead to the conclusion that chaos with 
respect to temperature is also present in models where this is manifestly not the case, as in the 
REM and OREM. It was then necessary to use a more general ansatz in replica space, allowing 
us to discern the chaotic from the non-chaotic behaviour. Near the critical temperature we 
find that if the magnetic fields or the temperatures in the two systems are different, an 
extensive amount of free energy has to be paid to impose an overlap greater than that 
corresponding to zero correlations. This implies that all the possible couples of states with 
different external parameters and free-energy density equal to that of the states dominating 
the partition function have minimal correlations. The scenario we find has implications for 
the physical picture of the low-temperature phase of the model. The hypothesis of successive 
bifurcations of the ultrametric tree as the temperature is lowered [12] is incompatible with 
our results. 

In conclusion, let us comment on the fact that temperature-cycling experiments in spin- 
glass off-equilibrium relaxation [19] show strong correlations in the dynamics at different 
temperatures on finite time scales. If the physics of experimental spin glasses were similar to 
that of the SK model in this respect, one could expect these correlations eventually to decay 
to zero for large times. It would be very interesting in this context to test the finitetime 
behaviour of the SK model in simulated temperature-cycling experiments. 

Appendix 

In this appendix we show that no ultrametric solution of the kind discussed in section 2 exists 
for the SK model near Tc (4). We will show this by contradiction, assuming an ultrametric 
solution with q&) and p ( x )  continuous in x .  The discussion is done in the case of the 
complete model; the same argument could also be applied to the truncated model, with the 
same conclusions. 

We discuss the case hl = hz = 0 and different temperatures; a similar (and simpler) 
proof leads to the conclusion that there is chaos with magnetic field. Let us write the 
variational equations for the complete model considering generic values of w, U, y, U: 

2rrSQap + w(Q2)up + S U Q ~ ~  - Y C[Q,& + Q$,lQap + v(Q3)ep = 0. (A11 

Plugging in the Parisi form of the matrices Qs and P one get a set of coupled integral 
equations for the functions qs(x) and p ( x )  that can be solved by repeated differentiation 
with respect to x .  

For future reference we g k e  the solution of the free case 1201 at a temperature 
r = (1 - P ) / 2 :  

S F r m  and M Ney-Nife 

Y 

W X - X <x 
q F ( X )  = 2u J- ( A 3  

I q ( 1 )  X >x 
where q ( x )  is continuous in P and q(1)  is specified by the equation 

2s + 2y(q2) - ~ ~ q ( i )  + ( ~ I J  + 2u)q(1)~ = 0. (A3) 
In order to solve the problem we have to compute the Parisi functions associated with 

the various terms of (Al). In particular we need to compute the functions associated with 
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and 

(As) 

To do that, let us recall that the eigenvalues associated with a Parisi matrix A + (ah, a@)) 
are 

lo = ad - (a) with~multiplicity 1 (A61 

(A7) 

Q: + P2(2Q1 + Qz) P3 + P(Q: + Q: + Qi 02)  

Q: + P2(Qi + 2 Q d  ( P3 + P(Q: + Q,’ + Q i  Qd 

di 
with multiplicity -n- 

XZ. 

1 

h(x)  = ad - x a ( x )  - 1 dy a(y) 

Observing that 
A’@) = -xa’(x) 

one can invert the relation (A7) and get 

A’(Y) a(x) = e(1) + / dy -. 
x Y 

Let us denote by bl(x),  A&), hp(x )  the eigenvalues associated with Ql, Q2, P, 
respectively. The eigenvalues associated with Q2 will be 

Q: + P2 + h;(x) + $ ( x )  = ‘A,(x) 

~ ( Q I  + Qd + hp(x)[1i(x) + M x ) ~  = (All)  
(s = 1.2); the corresponding functions can be obtained from (AS), noting that as the 
magnetic field is zero q,(O) = p(0)  = 0, 

2A~(x)  = 2 l x d y  [h.,(Y)qB(y)+h,(y)~’(y)l (A13 

’AP(X) = 2 l X d Y  IP’(Y)[~(Y) +My11 + [q;(y) +qi(y)lh,(y)) (A131 

A,@) = 2[As(x)q:(x) + hp(x)~’(x)l 

(A19 A P b )  = 2b’Q)[ki(x) + hz(x)l+ Iq ; (x )  + q;(x)lh,(x)I. 

In a completely analogous way one finds the functions 3A&) and 3Ap(x)  and their 
derivatives: 

3 A ; ( ~ )  3q;A: + 2~’1p(2h1+ Az) + ht(2q; + qi) 6416) 

3 A b ( ~ )  (A13 
The formula for 3A;(x) is obtained from (A16) by interchanging the indices ‘1’ and ‘2’. 
Observing that 

having made use of (A8). The derivatives with respect ton  of these functions are 

( ~ 1 4 )  
2 ,  

2 ,  

3p‘h; + p’0.Y + Ai + Ilhz) + hP(2hiq; +Uzqi + hiq; +Azq;). 

and that the functions associated with Q2b aresimply q:(x) and p 3 ( x ) ,  one finds that the 
derivatives with respect to x of the saddlepoint equations read 

P i  - 2Y(p,2 - (P’) - (~?))14; + 2W’hp  + q ih1  

+wtsq;h:. + 2p‘1,(2h1 +id + h32q; + 4;)1 + 2~p:q ;  = o (A19 
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a similar equation with 1 

[271z - YMP: - 

S Franz and M Ney-Nifle 

2, and 
z ~I - (4:) - (q2))Ip + wIp’(h1 + hz)) + (4; +q;)&l 

+ ~ [ 3 h ; p ’  + p’(h: +A; +hihz) + hp(2biq; + 2 h q ;  

+AN?; + hzql)l+ 2UP2P’ = 0. (AZO) 
Let us now study the possibility of an ultrametric solution. Consider the ‘small-x region’ 

defined in (23). where q , ( x )  = qz(x)  = p ( x )  = f ( x ) ,  and suppose f’(x) # 0. One can 
then differentiate (A19) repeatedly and find that 

f ( x )  = q F ( 2 X ) .  (A2U 
In the ‘large-x region’, where p ( x )  = p d  observing that & ( x )  = 0 there, one finds that the 
second equation is automatically satisfied, while the first two equations reduce to 

q32zs - 2Y(P: - (P*) - (4:)) + 2whs + 3 4  + 2uq,21 = 0 (AW 
that is, we get two uncoupled equations for q1 and q2 in this region. Again by repeated 
differentiation, we find that if q: # 0 then q h )  = ~ F ( x ) .  Using the assumption of 
continuity we find 

Y S < X , < 1  

The only free parameters at this level are the values ql(1) and 42(l). These can be fixed, 
e.g. by considering equation (A22) in x = YS which gives 

- 
25, + 2y [[ d~ qF(x)z  + (1 - ys)qs(i)2] - 2wq,(1) + (3v + 2u)qs(1)2 = 0. (AN) 

This shows that q,(l) is equal to the value q ~ ( 1 )  corresponding to 7 = ts. If now one 
inserts the resulting functions in equations (A19) one finds the conhadiction 

(AB) ( P d  - (P))((qI) - (42)) = o  
showing the inconsistency of the hypothesis of an ultrametric solution except for the bivial 
one with pd = 0. 
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