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Abstract. We study the correlations between two equilibrinm states of sk spin glasses at
different temperatures or magnetic fields. The question, previously investigated by Kondor
and Kondor and Végsd, is approached here by constraining two copies of the same system
at different external parameters to have a fixed overlap. We find that imposing an overlap
different from the minimal one implies an extensive cost in free energy. This confims by a
different method Kondor's finding that equilibrium states corresponding to different valves of
the external parameters are completely uncorrelated. We also consider the generalized random
energy model of Derrida as an example of a system with strong comrelations between states at
different temperatures.

1. Intraduction

The structure of the equilibrium staies of mean-field spin glasses has been widely discussed
in the literature [1]. At low temperature ergodicity is broken, and the contribution to the
Boltzmann average comes from ‘valleys® separated by infinite barriers. The statistics of the
correlations between the different valleys for equal values of the external parameters is one
of the most remarkable outcomes of the replica method. In the context of the Parisi ansatz,
it is found that the function g(x) is direcfly related to the statistics of couples of valleys,
while the whole set of states is organized as an ultrametric tree. Much less information
is available about the relations between the equilibrium states for different values of the
external parameters. The object of this paper is an investigation of this relation.

The states of mean-field spin glasses can be thought as a low-free-energy solution of
the TAP equations. Changes in the external parameters can cause the appearance or the
disappearance of solutions and medify the relative order of the free-energy levels. There
are models, for example the p-spin spherical spin glass, where the order of the levels is not
affected by changes in temperature [2). In this case the states at different temperatures are
correlated. )

In a model where 2 change in an exterpal parameter implies a reshuffling of the states
by an extensive amount, one can expect that the low-lying states at a given value of the
parameter will become highly excited states as the parameter is changed. For entropic
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reasons one would then find zero correlations between the new and the old equilibrium
states.

The first suggestions that states in the SK model comresponding to different external
parameters could be uncorrelated date back to Parisi in the case of magnetic field [3] and to
Sompolinsky [4] in the case of temperature. The problem has been addressed analytically
by Kondor [5] and Kondor and Végss [6]. Within the frame of the replica method they
considered the partition function of two realizations of the same system for different external
parameters. In these papers constant correlations were assumed; this constant was found to
be zero in mean field and the Gaussian corrections to this situation were computed.

Here we re-examine the question without using this assumption. Instead we follow a
method introduced in [7], and we take into accourt in the partition function (Z) of the two
systems only these couples of configurations having overlap equal to a fixed value py. It
was shown in [7], in the case of two systems at equal external parameters, that if py is
in the support of the probability function P(g). the logarithm of the constrained partition
function is extensively equal to that of an unconstrained system. This result tefls us simply
that the partition function is dominated by these couples of equilibrium states which satisfy
the constraint. Conversely, if p; is out of the support of the P(g) the system is forced out
of equilibrium and this implies an extensive increase of the free energy F = —log Z.

In the present case, an extensive increase in F implies a reshuffling of the free-energy
level of an extensive amount, and zero correlation between states for different external
parameters. The method, relying on the saddle-point approximation, is limited to the
computation of the extensive part of the free energy. So, a zero cost in free-energy density
would not strictly imply no reshuffling, but just that the reshuffling is not extensive. With
reference to the theory of dynamical systems, the situations in which small control parameter
changes imply uncorrelated equilibrium states has been often referred to as ‘chaotic’. We
will use this term in a more restrictive way to denote a situation where the free-energy
increase resulting from the imposition of a fixed overlap py 5 0 is extensive,

The paper is organized as follows. In section 2 we state the basic definitions and our
method, In section 3 we discuss the problem in the simple case of the Derrida generalized
random energy model (GREM), where handwaving arguments show that there is no chaos with
temperature in absence of a magnetic field, and along the lines of constant magnetization.
We show how some modifications in those models produce chaos with temperature. In
section 4 we study the SK model near the glassy transition. We show that no vitrametric
solution exists for the problems with different magnetic fields or temperatures. We argue
that this is the sign that chaos is present in both cases and give estimation for the free-energy
increase. Finally we draw our conclusions in section 5.

2. The model

Let us consider a system composed of two copies of a Shetrington Kirkpatrick (SK) model,
having different temperatures and magnetic fields (77, k1) and (75, A7), respectively, The
partition function of such a system is

z= ) exp[ﬁIZJ,,slsl+hIZS‘+ﬁzZJuS232+hzzs]=2122 )

i}, 5'2] i< i<j

where the couplings J;; (i, j == 1, ..., N) are Gaussian independent variables of zero mean
and variance 1/N, and the spins S are Ising variables. In what follows we will improperly
call free energy the quantity F = —logZ. To address the question of the correlations
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between the states dominating Z; and Z,, respectively, let us consider Z(p,) the sum (1)
restricted to those configurations which satisfy

1 1
pa = ;,-Z sis2, @

It is clear from the definition that Z(ps) < Z. It is shown in [7] in the case T} = T; and
- hy1 = hj that, in the low-temperature phase, one has (1/N)logZ = (1/N)log Z(py) as
soon as py is in the support of the function P{g) of the free system. This is a consequence
of the fact that the number of valleys dominating the partition function grows less then
exponentially with N, as can easily be understood noting that Z = fdpsZ(ps). An
increase in free energy at an extensive level implies the absence of low-lying states having
overlap pa.

In [7] it was shown how to deal with a problem of two coupled copies with the replica
method. We shall not repeat the derivation of formulae that are completely analogous to
those in [7] here, but we shall just skeich the results. Instead of the usual order parameter
matrix Qg of the replica method, there are three matrices th'b), Qﬁf and P, representing
respectively
135 gragrb L~ g1 g0

oSSt r=1,2 PaFEZS,. 5 (3)

i=1 i=1

r)
Qaréa:ﬁ

where @, b = 1,...,n and n is ‘the number of replicas’, which as usual has to be sent to
zero. The constraint in the partition function implies that the elements P,, have to be set
equal to py. Combining @, @@, P and its transpose PT into the matrix

agv p
a-(2"7,)

and denoting its elements by Q, & = (r, @), B = (s, b), it is possible to see, for both T}
and 7, near the critical temperature T, = 1 and 4; and ks small, that Qug ~ 1 — 77 and the
free energy admits the expansion up to fourth order in T, — T, (s = 1, 2):

. 1
F(pg) =— n}l_l;nw v log Z(pa)

1
= —lim— 1Tt 0™ + 5Tt Q% + 21, T PP+ = Tr Q°
=021 3

d 4 v 4 ¥ 2 2
+g Zﬁ:QmB -+ ZTIQ - E;Qaﬁoﬁy
o, afy

+11Y 00 +m2 S 0% +omhy Yy Pa,,} @
ub T ab ab )
where
=(1-TH/2 s=1,2 T2 = (1 - TN112)/2. &)

For the ‘complete’ SK model y = 4 = v = w = 1. It is customary in the study of the glassy
_transition to consider a ‘truncated’ (or ‘reduced’) model in which it is artificially posed that
y = v =0, and in which only the term 3, QZ; is retained from among all the quartic
terms. Kondor and Végsd have shown recently that this can give rise to instabilities in
considering couples of systems with different temperatures when the magnetic field is zero.
We anticipate that the arguments showing the presence of chaos do not depend critically on
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which of the two models is used. So, we will use the complete model to prove the presence
of chaos and we will estimate the free-energy increase within the truncated one. In any
case, equation (4) has to be maximized with respect to the values of the elements of the
replica matrices.

The basic object of our investigation will be the free-energy difference

AF = F(p;)—~F (6)

where F is the logarithm of the partition function of the two systems (at two different
external parameters) without constraint, and is equal to the sum of the free energies of the
two systems. In what follows we will refer to AF as ‘free-energy excess’, and to ‘chaos’
whenever this quantity is non-zero.

Following [7] we will consider here an analytic continuation to n — 0 for F{(py) in
which each of the matrices Q7 and P are parametrized according to the Parisi scheme,
that is, specifying the value of the diagonal elements as a function of the interval [0,1]
according to

09— 0,4,(x)) P—(psplx) O<x<gl )

The usual restriction of the choice of the Parisi function to the space of non-decreasing
function is substituted here by the requirement of semi-positive definiteness of the matrices

q1(x) p'(x)
8
( P'x) g;(x) ) ®

for any x, where the primes denote differentiation with respect to x [8]. In particular, this
implies that the functions g/(x) are both positive.

The saddie-point equations for the maximization of F>(ps) of the truncated model are
written in terms of the g;(x) and p(x) as

§F _ _ _ _ £ _ 5
e = 25— @18 + 21pe — (plpG) [ ot -ao
- fo dy [p(x) — pOIP + 2g3(x) + 2 =0 ©)
8F
—— =[m2 — (g1 + g2)1p{x) + [ps — {p}l[q1 (%) + g2(x)]
Sp(x)
- fo dy [g1(x) — 1 () + g2(x) — 2 (M]px) — p(O)]
+%p3 (x) + hha = 0. (10)
We also write for future reference the expression for the derivative of F with respect to p,:
aF
P —[712p4 — (pla1 + g2)) + 303 + hyha). (11)

Our variational equations differ from the one considered in [5, 6] in the fact that there p,
was taken as a variational parameter and the function p{x) was constrained to a constant.
We will see in the next section that models without chaos require non-constant p(x).

Before starting to discuss the maximization of (4) and the solutions of (9),(10), we
discuss the correlations between states at different temperature and magnetic field in the
GREM.
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3. The GREM: a model without chaos

Let us briefly review Demida’s construction of the generalized random energy model.
Without any pretension of being exhaustive on this point, we refer the reader to the original
papers on the model [9-11].

In the GREM one considers 2V conﬁguratlons, associated with the ‘leaves’ of an
ultrametric tree. The tree is cornposed of L levels of branching. At a level ¢, each branch
generates N, = exp(NS,) new branches, in such a way that 2% = e¥Ze%_ A random
energy is associated with each branch at a level ¢, so that the total energy of a configuration
is given by E = 3~ €,. The &, are taken as independent Gaussian variables of zero mean

and variance -ez = NJ?2/2. Two configurations are conventionally said to have an overlap
ga- with 0 € g4 < 1, if they coincide at a level «, and consequently have the same ¢g for
B < a. It can eventually be considered as a ‘continuum limit’ of infinite number of levels
(L — oc) with infinitesimal spacings, where J, — J(g)dg, Sy — S(g)dg . This exhausts
the construction in the absence of a magnetic field. In the presence of a magnetic field
h one has to associate magnetization one with an arbitrarily selected state, in such a way
that the configurations of magnetization m are those having an overlap equal to m with this
state. For these states the energy gets an extra confribution equal to —NAm, where h is the
magnetic field.

In what follows we will limit our discussion to the case where J(g) and S(g) increase
with g, where the levels associated with small ¢ freeze at a higher temperature than the
levels of high g.

The absence of chaos with varying temperamre in zero magnetic field is almost obvious;
by definition of the model, a change in temperature does not affect the order of the energy
levels, So, two equilibrium states at different temperatures 7 and 77 can be strongly
correlated. In the same way it is easy to realize that there is chaos with the magnetic field.
Two different magnetic fields, say A; and A2, impose respective magnetizations my and m,
on the system, with my #% mas. By construction the overlap between two states with such
different magnetizations is equal 10 g2 = min{my, m,}. Imposing a different overlap would
bring the magnetizations out of their equilibrium values, implying an extensive cost in terms
of free energy. Furthermore, in the presence of a magnetic field, a change in temperature
implies a change in the magnetization, and again we find chaos. Thus chaos is clearly
absent along the lines (T, /) of constant magnetizationt.

Let us now show with the aid of the replica method that, for two different temperatures
in zero magnetic field, there is no free-energy cost in imposing an overlap p, in the support
of the function P{g). Note that the same results could easily be obtained with the Derrida
probabilistic technique. The replicated partltlon function of the GREM in zero field, in the
discrete formalism, is

Zi=) exp (“ > ﬁsef:.,) I1 %z (12)
iz, £.8,0 a<ao

where the level o corresponds to the overlap py, ¢ =1,..., L, 5 =1,2 and;:z =1,.
is the replica index. On performing the average over the values of the energy levels one
gets

Zn = Z exp ( Z Jzﬁrﬁs Z g, J“) l—[ szl-f:.z' (13)

z.) ars agan

1 We thank J-Kurchan for this observation.
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To evaluaie the partition function we make the following ansatz on the arrangement of the
replicas. We suppose that for the levels & < o, where Ja 1 = Jaq, the replicas are divided
into n/x, groups of x, coinciding states (i.e. Ja r = Jbs for any r, s if ¢ and b are in the
same group). For the levels « 2 g, one has j7; # j7,, and one can divide, accordingly to
the same scheme the replicas with s = 1 and s = 2 into n/x] and n/x2 groups, respectively.
it is easy to see that the free energy is given by the expression

1 Se 11
—losZ7 =} [Z + i+ ﬂz)zfﬁxa] + [Su (x—1 + }E) + J2(Bx + ﬂgxg)]

oy o>ey o
(14)

taken at the saddle point over the various x. Assuming that the level ao is frozen at the
temperatures 7; and T3, one finds, on differentiating with respect to xa,x and x2 that

[ 2 .
B+ B2 = -jc—%- o € o
S,
] 82x% = J—Z - a>apand /(028 <1 (15)
a
[ x; =1 o > o and Sy /(J2B3) > 1.

Substituting these in (14) one sees easily that (1/N)log Z* = (1/N)[log Z7 -+ log ZF}, that
is, we find no chaos with temperature.

It is interesting to note that, in the continuum limit, inverting the functions x(g) and
x;(g), the functions g;(x) and p(x) take the form:

gu (1 + B2)x) x < Xo

gs(X) = Pu X SXx € x (16)
qu (.Bsx) X > Xg
(B + <
() = [q ((By + B2)x) X < Xp an
Pa X< x

where g, (8x) is the inverse function of Bx(g) = S{g)/J*(g), and the points xp and x; are
defined by the relations

qu((B1 + B2)xo) = qu(Bsxs) = pa. (18)

The oaly solution with a constant p(x) is the one with p,; = p(x) = 0.

So we have shown, in a situation where the order of the levels does not depend on the
temperature, that imposing an overlap p, in a suitable interval does not imply an extensive
free-energy cost, i.e. chaos with does not occur with temperature. The sitvation is different
if the ordering of the state depends on the temperature. In the context of the GREM, such a
dependence can be introduced upon considering one or two of the following modifications:

e choosing temperature dependent S, or Jy;
e not imposing the identity of the levels for different temperatures.

This can be done without dramatically changing the organization of the states at fixed
temperature and the temperature dependence of the free energy. Here we choose to discuss
the simplest case, namely the second possible modification. We take a REM (i.e. 2 GREM
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with only one level, L = 1), where the Gaussian energies depend on T, and the correlations
are specified by

e(Te(T2) = 845 C(Ty, TN (19

where C(T1, T2) € J? = C(T, T). The model can easily be analysed with the probabilistic
method used by Derrida to solve the REM. For the sake of brevity, we give our results in the
frame of the replica method. Let us compute the free energy of two replicas, at temperatures
T; and T, below the freezing transition, constrained to be in the same state

7= Y exp|—pied(T) - B (D)
.

= exp [ N8} + BDT* +2815:C(T1, 1)) D8y, ,-b} . (20)
i ab

Proceeding as above for the GREM (dividing the replicas into groups), one finds that
1
i

—_ -1 — 1 —_
log 77 = l0g 28} + )2 + 26:5:C(T, ) < - log T+ — 0g . 21)

The equality is recovered for C(73, T3) = J2 which corresponds to identical levels at the
two temperatures. It would be interesting to understand if this mechanism which produce
chaos with temperature is of any relevance in microscopic models.

4. Chaos in the SK model

Let us now turn to the study of the $K model and investigate the possibility of an absence
of chaos. A possible scenario implying the absence of chaos has been proposed in [12].
The states at different temperatures are strongly correlated. On lowering the temperature
the ultrametric tree of states undergoes multifuractions in such a way that the states at the
new temperature are the descendents in the tree of the ones at the old temperature. This
is what happens in the GREM, and it seems reasonable that whenever chaos is absent this
must be the correct picture: the states at different temperatures must be part of the same
ultrametric tree. In this case the total matrix Q,g should be uvitrametric: for any given three
distinct replicas e, B, ¥ one should find Qup > minfQ,, , Q. }. Specializing the relation to
a={1,a), =012,a). y =(1,¢), that is, Q1524 = Psy = pa, it is easily found that

Pd Qia,1c 2 P4
Qieoa = Pac = (22)
Cia,1c Qo3 < Pa.

If we suppose that, as in the case of coinciding external parameters, the functions g,(x)
and p(x)} are continucus [7], we find that condition (22) reflects on the functions g;{x) and
p(x) in the following way: g;(x) and g2(x) must be non-decreasing in the whole interval
[0, 1], and a point X in [0,1] must exist such that

gs(x) = p(x) = g(v) x<%

p(x) = pa x>X. @)

By continuity one has g.(X) = pg.
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The solution (16),(17) for the GREM is obviously of the form proposed here. A solution
of this form was found in [7] in the case where T} = T> = T and /) = hp = k. It reads

qr(2x) 0<x Cxof2

g1(x) = g2(x) = | pa X0/2< x < Xp (24)
QF(x) xﬂ HF X g 1
gr(2x) 0<% < xo/2
(x) = (25)
pd x/2<x<1
where the function gr(x) Is the ‘free’ Parisi function
3 L
3h2 3
gmin=('4_) 0 <X < Xin
gr{x) = i g Xmin € X K Xmax (26)
g
Gmax = —_2‘_' Xmax X <1

in which xp is the point defined by gr(x0) = py, and Xxpyn and xp,,, are given by continuity.
The interval of p; for which this solution is well defined, and that will be considered in what
follows, i gmin < Pa < gmax. The form (24), (25) is not limited to this problem; simply as a
consequence of ulirametricity any model with replica symmetry breaking admits (24),(25) as
solution of the two-replica problem if the function gr(x) solves the single-replica one [13].

The main result of this paper is that, as long as T} # T or k1 # k3, 2n ulirametric
solution of the kind (23) does ror exist for either the truncated or complete models of
section 2. A proof of this fact can be given assuming a form of the kind (23) and showing
that it does not satisfy the saddle-point equations. We postpone this proof to the appendix;
despite its conceptual simplicity the proof, already rather technical for the reduced model,
is complicated by the necessity of using the complete model if we want full control over
all the terms of order 7} in the free energy.

We conclude that chaos must be present both in temperature and magnetic field.

We shall now give some estimate for the free-energy excess when the constraint (2)
is imposed in various situations. The solution of equations (9),(10) for generic values of
temperature, magnetic field and p, is very difficult to find. We have seen that the situation
simplifies for k) = h; and T} = T, where the solution for generic pgs is (24)-(26). Other
simple cases, 1o be presented below, are found for T3 # 15 and k; 3£ ki, for special values
of ps = pg which permit functions p(x) that are constant with x. It is easy to find that
in this last case the system verifies 8F/8p, = 0, that is, the free energy is an extremum
with respect to py. The only stable solution is the one which is a minimum with respect
to p;-[5], and has a free-energy excess equal to zerof. It is easy to find that this solution
must satisfy

gs(x) = gr(x) and p(x) = pa. 27
The values of p4 for which this solution exists satisfy
T2pa — (g1 +92) Pa + YPg + hyhz = 0 (28)

1 The reader should not be confused at this point; we are by no means extremizing F with respect to pg, but we
are claiming that a special value pa. exists, for which the free energy has a stable saddle point with p(x) = constant.



On chaos in mean-field spin glasses 2507

which coincides with 8F/8p; = 0 (see equation (11)). This solution was first found by
Kondor in [5]. It is the only solution we found which has zero free-energy excess and it
implies minimal correlations between states corresponding to different parameters.

We shall use both the solutions (24), (25) and (27),(28) as starting points to compute
the free-energy excess perturbatively in some small parameter. We shall consider the three
following limiting situations:

o Casel. T\ =T, by # ha, pg = p§ + 8ps and we perturb for small §p, around the
solution of (10) with p(x) = p9.

o Case2 T =1, by = k1 5k fixed py and we perturb for small 7 around the solution
(24),(25).

o Case3. Ty £ T, hy=he, pa= pf'_, + 8ps and we solve perturbatively in 8g,.

In all cases, instead of solving equations (9), (10) even in an approximated form, we will
suitably parametrize the functions g;(x) and p(x), and maximize the free-energy functional
with respect to these parameters. This variational procedure will enable us to obtain lower
bounds for the free-energy excess in the various situations. We expect, however, to obtain
the correct order of magnitude for AF as a function of the various external parameters.
The whole program is analogous to the one pursued in [7] for computing the free-energy
excess to have py out of the support of the P(g) for identical parameters, or in [8] for
studying violations of ultrametricity. We refer the inferested reader to these papers for a
more detailed presentation.

Let us illustrate case 1 as an example. For p; = pg + 8ps (Opy € pg) we look for
functions g;(x) and p(x} equal to (27) plus some small variations. These variations, that we
call 8g,(x) and 8p(x), have to be of order of ép, in the saddle-point solution. We choose
to parametrize them as follows:

[ 3] X< Xp/2

8g1(x) = 1 8gF Im/2 < x <x + 83

| O x> x1+dx

3q) X < X2
K 09)
Sqa(x) = | 8¢2 Xm/2 <X < X2+ 8x2

0 x > x3 4+ 8xp

3p1 X < Xpf2

6P(I) = { N
8p X > Xy /2

where Xy, /2 is arbitrarily chosen as the middle of the first plateau in g, i.e. X, = minfx;, x2]
with x; = 2g%;, and g5, = (322/4)}/3, (s = 1, 2). The various parameters appearing above
are determined by maximization of the free-energy functional supposing self-consistently
that they are of order 8py. It turns out that to lowest order the free-energy excess is of order
8pl. As we are only interested in lowest-order terms, we can minimize the polynomial of
order two thus obtained by expanding up to second order the free-energy functional in all
the parameter of order §p3. The resulting saddle-point equations are linear equations in the
(10) variational parameters, that we solved numerically for given values of 7, #; and #,.
In figure 1 we present the result for the free-energy excess at some values of the external
parameters. We also solved analytically the equations in the two limit cases: (i) Az = 0 and
(ii} &y = ki + &k with 8k < k. In this last case we just computed AF to the first order
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Ba-06

T0-08
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3e-08

4e-06

3a=06

2e-06

1e~-06

L : 1
[} 0.005 0.01 0.015 Q.02 Q.025 0,03

Figure 1. The free-energy excess AF/8p3 as a function of g2, = (%hg)[ﬁ in two cases. Upper
curve: gl. = 0027, by = 0.0038, AF = 0 for g2, = 0.027. Lower curve: g} = # =0
AF =0for q?nin = 0. The symmetry of AF as a function of ¢; and g2 implies that two curves
are equal in the opposite extremes.

in 87, The results for these two cases are;

2187\
(Y) 83 h?ﬂ/qmax hy =0
aF=1% (30)
-ﬁapg hy 8k 8h K .

In all cases the variational parameters turned out to be consistent with the hypothesis
of being of order ép, and with the positivity condition (8}, e.g. in the case by =0, ky 5 0,
xn = 0, we found 897 = —8puqumin/(4qmax — 3qmin) and 3p! = 5p? = 8py, the other
variables being zero.

The computation of case 2 fior small field difference 8 = ks — k) follows a very similar
scheme. In this case we perturb around the solution of the problem with §2 = 0 (24), (25)
With gmin < P < Gmax- Without entering in the details of the solution, which is similar to
the one of the previous case, we give the result. Under the (self-consistent) hypothesis that
all the variations are of order 8% one finds that the free-enersy excess is of order §42. We
get

(3p3 + 3Padwin + 295,
P3 + Paduin + 245,
Note that the free-energy excess is zero for py = gmin, s it shouid be.
Very similar paths can be followed to study the case 3 of chaos with temperature. Here
we found for the free-energy excess:
Ty
AF = apju.
T
It is worth noting that equation (32) is derived from the truncated model in a magnetic
field Ay == By = h but does not depend on h. As was noted by Kondor and Végst [6],
the truncated model presents a spurious instability in the fluctuation matrix. The result (32)
shows that our calculation is insensitive to this instability.

AF = 381*(Pa — GinX(Pa + Guvin) (31)

(32)
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Equations (30)-(32) can be used to estimate the probability distribution for an overlap
ps between states at different parameters in finite systems via the relation P(py) ~
exp(—N AF). This relation allows for tests of (30)—(32) in numerical simulations.

Finite dimensions

Let us now briefly comment about the relevance of our results for finite-dimensional spin
glasses. )

In addition to spin—spin correlations, an important quantity in finite dimensions is the
correlation overlap function (S;5;}1(5,5;)2 . In a chaotic situation this decays exponentially
with a characteristic length & » for large |i — j|. This quantity was studied in [5, 6], where
it was found that for 4 > 8

o ~ B3 and tnp~ T — Tl (33)

This behaviour was confirmed in numerical simulations by Ritort [14]. The sensitivity to
small variations of an external parameter X is characterized by a ‘chaos exponent” £, in
Ex,.x, ~ | X1 — X1/, first considered in the framework of the scaling theory of Bray and
Moore [15] and the droplet theory of Fisher and Huse [16].

These results (33) may be compared with ours via the relation found in [14]:

N[api]av ~ §4 7 (34)

where [- - -]ov denotes the average with respect to the distribution function of py, P(ps) ~
exp(—N AF). Upon substituting our results for the free-energy excess AF one recovers
the results (33) for the dimension-independent exponent ¢ in the corresponding cases, in
the case of two non-zero magnetic fields, for small |y — fi5| = 8% our result is

Eny mpran ~ (b SHYV4 (35)

In lower dimensions it is possible to determine &7,z [16-18] and AF [18] within the
scaling theories. - The differences compared with the mean-field case are that the relation
between the two is different from (34), giving AF ~ SP‘%lT] - T,|%%, the exponent ¢
now depends on dimension and there are two regimes in temperature with two different
behaviours of the two guantities mentioned {17} (one is the low-temperature phase, the
other is the critical region). It could be interesting to see whether the latter happens in the
mean-field case, too.

5. Conclusions

In this paper we have studied the correlations between states at different magnetic fields
and temperatures in some spin-glass models. In the REM and GREM chaos is absent with
temperature, while there is chaos with magnetic field. This is understood in simple terms
based on the ultrametric construction of temperature-independent trees. As soon as a
temperatore dependence is assumed, considering correlated but not identical energy levels
for different temperatures, chaos is present. This could provide a possible mechanism for
the occurrence of chaos in microscopic models. )

In the case of the SK model, we confirm the suggestions of Parisi [3] and Sompolinsky [4]
that chaos is present both with respect to magnetic field and temperature changes. The
question was previously investigated analytically by Kondor [5] and Kondor and Végso [6],
who reached conclusions similar to ours. We stress, however, the importance of our further
analysis: the results of these latter authors were based on an ansatz in which the matrix Py,
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had all elements identical. Such a restriction would lead to the conclusion that chaos with
respect to temperature is also present in models where this is manifestly not the case, as in the
REM and GREM. It was then necessary to use a more general ansatz in replica space, allowing
us to discern the chaotic from the non-chaotic behaviour. Near the critical temperature we
find that if the magnetic fields or the temperatures in the two systems are different, an
extensive amount of free energy has to be paid to impose an overlap greater than that
corresponding to zero correlations. This implies that all the possible couples of states with
different external parameters and free-energy density equal to that of the states dominating
the partition function have minimal correlations. The scenario we find has implications for
the physical picture of the low-temperature phase of the model. The hypothesis of successive
bifurcations of the ultrametric tree as the temperature is lowered [12] is incompatible with
our results.

In conclusion, let us comment on the fact that temperature-cycling experiments in spin-
glass off-equilibrium relaxation [19] show strong correlations in the dynamics at different
temperatures on finite time scales. If the physics of experimental spin glasses were similar to
that of the SK model in this respect, one could expect these correlations eventually to decay
to zero for large times. It would be very interesting in this context to test the finite-time
behaviour of the SK model in simulated temperature-cycling experiments.

Appendix

In this appendix we show that no ultrametric solution of the kind discussed in section 2 exists
for the $K model near T, (4). We will show this by contradiction, assuming an ultrametric
solution with g,{x) and p{x) continuous in x. The discussion is done in the case of the
complete model; the same argument could also be applied to the truncated model, with the
same conclusions.

We discuss the case 1 = k2 = 0 and different temperatures; 2 similar (and simpler)
proof leads to the conclusion that there is chaos with magnetic field. Let us write the
variational equations for the complete model considering generic values of w, u, y, v:

275 Qup + w(Qup + 2uQl5 — ¥ D [QF, + G5, 1Q0s + v(Q@%)ep = 0. (Al)
¥

Plugging in the Parisi form of the matrices @, and P one get a set of coupled integral
equations for the functions ¢;(x) and p{x) that can be solved by repeated differentiation
with respect to x.

For future reference we give the solution of the free case [20] at a temperature
t=(1-TH/2 -

w X —
e X <X
=] P+ e 42)
g(l) x2x
where ¢(x) is continuous in ¥ and ¢(1) is specified by the equation
27 +2y{g®) — 2wq (1) + Bv + 2u)q(1)* = 0. (A3)

In order to solve the problem we have to compute the Parisi functions associated with
the various terms of (Al). In particular we need to compute the functions associated with

sz( 0} + P2 P(Q1+Q2))

P(O1+ Q) Q2+ P2 A
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and
Q° = 03 + P20 + Q2) PP PO+ Q24+ 01022
PP PO+ 024+ 010y) 0+ PUO+202) )

To do that, let us recall that the eigeﬁvalues associated with a Parisi matrix A — (dg, a(x))
are ’

(AS)

Ao =ag — {a) with multiplicity 1 (A6)
1 - - .
Alx) = ag — xalx) — f dy a(y) with multiplicity —-n%. (A7)
x
Observing that )
- Ax) = —xa'(x) (AB)
one can invert the relation (A7) and get
1 A.f
a(x) = a(l) + f dy —E—J-yl - (A9)

Let us denote by A;(x), Az(x), Ap(x} the eigenvalues associated with Q), Qs, P,
respectively. The eigenvalues associated with Q? will be

Q%+ P* > 22(x) +22(x) = A (x) {A10)

P(Q1+ Q2) = Ap(x)[A1(x) + Aa(x)] = 2A,(x) (All)
(s = 1,2); the corresponding functions can be obtained from (A9), noting that as the
magnetic fleld is zero g;(0) = p(0) =0,

24,00) =2 fo dy DO + AP ] , (A12)

PAp(x) =2 fa " dy (P’ MG + 22N+ [9]0) + (N1} (A13)
having made use of (A8), The derivatives with respect to x of these functions are

A5 (x) =20 (x)g(x) + Ap (X} P (x)] (Al4)

2AL(x) = 2p" ()M (x) + Aa(x)] + [g1 (%) + g3 (2)A (0} (A15)

In a completely analogous way one finds the functions 3A;(x) and 3Ap(.\:) and their
derivatives:

ALY =3g[AT + 2P (201 + M) + 22291 + 43) (A16)
BALG) =302 + PO + A + MAg) + Ap(2hag) + 2hag) + dgj + Rag)). (A17)

The formula for A5(x) is obtained from (A16) by interchanging the indices ‘1’ and ‘2’
Observing that

2[pZ — (p?) = (g2 = :
SEHEEN e S
Y 2[p; — (P°H - gy} — (g3} r#&s

and that the functions associated with Qf‘,ﬂ are simply ¢2(x) and p*(x), one finds that the
derivatives with respect to x of the saddle-point equations read"

271 —2y(p] — (P%) — {gi))]ai + 2wlp'Ap + giMi]
+V3iAT + 2p'Ap (201 + Az) + A5 (2g] + q2)] + 2ugig] = 0 (A19)



2512 § Franz and M Ney-Nifle

a similar equation with 1 < 2, and
(2712 — Q2(pF — (P*)) — (g) — {@N1P’ + wlp (i1 + A2)) + (g7 + g3)Ap]
+o[3A2p" + P'(AE + A3 + Arha) + Ap(2Zhag] + 222q;

+A1g5 + Aogi)] + 2up*p’ = 0. (A20)
Let us now study the possibility of an ultrametric solution. Consider the ‘small-x region’
defined in (23), where g:(x) = g2(x) = p(x) = f(x), and suppose f’(x) # 0. One can
then differentiate (A19) repeatedly and find that
Fx) =qr(2x). ] (A2D)
In the ‘large-x region’, where p{x) = py observing that A,(x) = 0 there, one finds that the
second equation is automatically satisfied, while the first two equations reduce to
ai[2% — 2y(p5 — (%) — (g2)) + 2wis + 3vA7 + 2uglt = 0 (A22)

that is, we get two uncoupled equations for gy and ¢, in this region. Again by repeated
differentiation, we find that if g/ = 0 then ¢;(x) = gr(x). Using the assumption of
continuity we find

gqr{2x) x < xo/2

P x0/2 < x £ xp gr(2x) x < xo/2

gs{x) = _ plx) = (A23)
qr(x) Xp<x <Xs Pd x/2<x <1
qs(1) Ts<x<1

The only free parameters at this level are the values g;(1) and g2(1). These can be fixed,
e.g. by considering equation (A22) in x =X, which gives

2t +2y [ .[) N dx gr(x)*+ (1 - fs)qs(l)z] — 2wgs(1) + (3v + 2)gs(1)* = 0. (A24)

This shows that g;(1) is equal to the value gg(1) corresponding to 7 = ;. If now one
inserts the resulting functions in equations (A19) one finds the contradiction

(Pa — (PDUg1) = {g2)) =0 (A25)

showing the inconsistency of the hypothesis of an ultrametric solution except for the trivial
one with py = 0.
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